Discovery on Target
Discovery on Target Mobile Header

Ion Channels as Therapeutic Targets

Day 1  |  Day 2  | Download pdf 


November 1, 2010

Course 2   3:30 pm – 6:30 pm

Automated Patch Clamp for Ion Channel Drug Discovery

3:30 Welcome and Overview

Chris Mathes, Ph.D., Vice-president & General Manager, North America, Sophion Bioscience, Inc 

4:00 Designing a QPatch Assay; Help for Beginners

Dayne Okuhara, Ph.D., Synta Pharmaceuticals


4:40 Refreshment Break


5:00  Tips and Tricks on Ionworks

Y. Tony Lee, Novartis

5:40 Automated Patch Camp for Ion Channel Screening

Chris Mathes, Ph.D., Vice-president & General Manager, North America, Sophion Bioscience, Inc.

6:15 Questions and Discussion

*Separate registration required.


7:00 am Conference Registration and Morning Coffee

Keynote Presentations

8:30 Chairperson’s Opening Remarks

Chuan-Chu Chou, Ph.D., Research Fellow, Merck

8:40 Ion Channels: Targets of Therapy and the Subject of Safety

Gregory KaczorowskiGregory J. Kaczorowski, Ph.D., President, CEO, Kanalis Consulting, L.L.C.; Adjunct Professor, Physiology and Pharmacology, New Jersey Medical School; Adjunct Professor, Physiology and Biophysics, Robert Wood Johnson Medical School

Ion channels are critical mediators of numerous physiological processes. They are not only important therapeutic targets themselves, but their unintended modulation can also cause unwanted drug side effects. This presentation will focus on strategies to identify new ion channel targets and on high throughput methodologies to dial out undesired ion channel interactions.

9:25 Evolving Approaches to Ion Channel Drug Discovery in Big Pharma

Laszlo Kiss 2Laszlo Kiss, Ph.D., Cell Biology Team Lead, Merck Research Laboratories 

10:10 Grand Opening Coffee Break in the Exhibit Hall


Ion Channel Modulators

10:40 Denufosol for Cystic Fibrosis: An R&D Case Study of an Investigational GPCR Agonist that Functions as an Ion Channel Regulator

Tomas Navratil, Ph.D., Director, Pulmonary Scientific Affairs, R&D, Inspire Pharmaceuticals

Cystic Fibrosis is a genetic, lethal, and multi-organ disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic-AMP-regulated chloride ion channel that also modulates epithelial sodium channels. Mutations in CFTR lead to decreased chloride secretion and increased sodium absorption across airway epithelia, resulting in reduced hydration of the airway surface, decreased mucociliary clearance, and chronic mucus plugging/airway obstruction. Most CF patients die from progressive loss of lung function associated with chronic lung inflammation and opportunistic bacterial infection. Denufosol is an inhaled ion channel regulator that stimulates an alternative calcium-activated chloride channel in airway epithelial cells via agonism of the P2Y2 nucleotide receptor. Denufosol also inhibits sodium absorption and increases ciliary beat frequency and these integrated pharmacological actions of denufosol are expected to correct the ion transport defect in CF via a mechanism of action that is independent of CFTR function. This presentation will present the denufosol program as a case study focusing on the value of leveraging scientific data and insights gained throughout R&D to better understand and optimize the therapeutic potential of an investigational drug with a novel MOA in a rapidly changing and highly competitive treatment landscape.

Sponsored by
11:10 The IonWorks Barracuda System, a 384-Well Automated Electrophysiology Platform for Ligand- or Voltage-Gated Ion Channels

Karen Cook, M.S., Application Scientist, Automated Electrophysiology, Molecular Devices, Inc.
An introduction to the IonWorks Barracuda system will be presented including validation data collected from Ligand- (LGIC) and Voltage-Gated (VGIC) channels.  The system allows simultaneous and continuous measurement of ionic currents at 384 separate recording sites.  Currents are measured using a single hole (SH) or an array of 64 holes in each well (PPC).  We will present data collected on the IonWorks Barracuda system in both SH and PPC modes.  Pharmacological blockade of ion channel activity is also presented to validate the use of the IonWorks Barracuda system for screening ion channel targets in a drug discovery setting.

11:40 Discovery and Development of CFTR Modulators for the Treatment of Cystic Fibrosis
Fredrick VanGoor, Ph.D., Scientist II, Vertex Pharmaceuticals
Cystic Fibrosis (CF) is caused by genetic mutations that result in a malfunctioning or missing CF Transmembrane Conductance Regulator (CFTR) chloride channel at the cell surface of epithelial cells. Pharmacological agents that repair the underlying molecular defects in CFTR due to gene mutations offer hope for the treatment of CF. Vertex is pursuing two complementary approaches to repair mutant CFTR function. The first approach is to identify small molecules that increase the cellular processing and delivery of mutant CFTR proteins, such as F508del-CFTR, to the cell surface. These agents are called CFTR correctors and are exemplified by VX-809. The second approach is to identify small molecules that increase the channel gating activity of mutant CFTR located at the cell surface. These agents are called CFTR potentiators and are exemplified by VX-770.

12:10 pm Modulation of Sodium Channel Currents by Physiological Concentration of Thyroid Hormone L- Thyroxine

James Cao, Ph.D., Staff Scientist, Signal transduction, Ordway Research Institute

Acute modulation of thyroid hormones on ion channels through non-genomic pathways has attracted increasing research attention. Using a whole-cell patch clamp recording method to study sodium channel currents (INa) of human skeletal muscle type (hNav1.4) that are stably expressed in HEK 293 cells, we show that physiological concentrations of L-thyroxine (T4, 10-6 M) rapidly enhanced INa by 40.9% (activated at -30 mV, n=10). The enhanced INa was associated with a 10 mV negative shift in INa activation threshold (-50 mV vs. -60 mV) 20 mV negative shift in maximal INa activation (-20 mV vs. -40 mV), implying a T4 mediated rapid modulation of open state of sodium channels. In contrast, the potentiation of INa could not be reproduced by 3, 5, 3’-triiodo-L-thyronine (T3), a genomically active form of thyroid hormone. Selective and rapid modulation of sodium channels by T4, but not T3, suggests a unique role of T4 in the nongenomic regulation of the physiological activity of sodium channels. We will establish that this effect of T4 is indeed non-genomic and mediated by the plasma membrane hormone receptor, integrin avb3.

12:40 Luncheon Presentation (Sponsorship Opportunity Available) or Lunch on your own

2:20 Chairperson’s Remarks

Tomas Navratil, Ph.D., Director, Pulmonary Scientific Affairs, Inspire Pharmaceuticals, Inc.


Novel Targets

2:25 Kv1.3: A New Class of Therapeutic Target for Type 2 Diabetes

Chuan-Chu Chou, Ph.D., Research Fellow, Merck

Insulin-independent glucose turnover is becoming a focus of attention in drug discovery for Type 2 Diabetes. In this presentation two lines of evidence will be presented to support that Kv1.3 fits this category and should be considered as a unique target for treating the disease: insulin-independent glucose clearance in human cells through selective blocking of Kv1.3 channels, and differential effects of Kv1.3-selective compound in wild-type and Kv1.3-deficient mice.

2:55 Ion Channels as Novel Targets in Cancer

Mustafa Djamgoz, Ph.D., Professor of Cancer Biology, Cell & Molecular Biology, Imperial College London

A variety of ion channels have been detected in cancer cells and tissues. This is an epigenetic phenomenon and not a passive byproduct of the cancer process. In particular, metastatic breast and prostate cancer (and several other carcinomas) express functional voltage-gated sodium channels, activity of which enhance the cells’ invasiveness. Importantly, these sodium channels are neonatal splice variants not seen in normal adult tissue. This enabled generation of a cancer-specific blocking antibody.

3:25 Networking Refreshment Break in the Exhibit Hall

4:05 Discovery and Characterization of Novel Chloride-Channel Inhibitors

Merritt Maduke, Ph.D., Associate Professor, Stanford University

The “CLC” family of chloride channels and transporters are fundamental to all of physiology, with functions ranging from the regulation of bone mineralization, muscle excitability, neuronal activity, fluid/electrolyte balance and blood pressure, to the facilitation of extreme-acid tolerance in pathogenic bacteria. A major roadblock in studying the CLC proteins has been the dearth of specific small-molecule inhibitors, which could be used to probe protein function on the molecular and cellular level, and to treat CLC-mediated disorders. Our research is aimed at overcoming this roadblock by developing novel chloride-channel inhibitors with improved affinities and specificities.

4:35 Identification and Optimization of Novel Thienopyrimidines as Inhibitors of the Kv1.5 Voltage-Gated Potassium Channel

Basil Hartzoulakis, Ph.D., Principal Scientist, Medicinal Chemistry, Xention Ltd.

Atrial fibrillation is one of the more common cardiac arrhythmias, with estimates of around 11M people affected in the seven major economies. Current therapies are considered to be poor, with many patients suffering adverse side-effects, including pro-arrhythmic events. One of the approaches considered to be viable for reducing the incidence of AF is to extend the atrial repolarisation period, thereby reducing the inherent electrical excitability of cardiac myocytes. Recent studies have demonstrated that the ultra-rapid delayed rectifier current, IKur (carried by the Kv1.5 channel) is predominantly found in human atrial cells and therefore offers the potential for selective intervention in the repolarising phase of atrial currents. The discovery and optimization of a novel series of heterocyclic Kv1.5 channel blockers will be is reported.

5:05 Interactive Breakout Discussion Groups

High Capacity, Cell Based, Channel Screening Assays to Support Cardiac Safety

Moderator: Greg Kaczorowski, Ph.D., Kanalis Consulting

Ion Channel Target Selection Criteria

Moderator: Maria Garcia, Ph.D., Kanalis Consulting

Targeting Ion Channels with Biologics: Experience, Reality, Future Perspectives

Moderator: Chuan-Chu Chou, Ph.D., Research Fellow, Merck

6:15 – 7:15 Happy Hour in the Exhibit HallSponsored by
Sophion logo

Japan-Flag Korea-Flag China-Simplified-Flag China-Traditional-Flag  

Register Today!

Final Agenda Now Available









The exhibit hall was sold out in 2015, so please contact us early to reserve your place. To customize your sponsorship or exhibit package for 2016, contact:

Jon Stroup
Sr. Business Development Manager






Next-Generation Histone Deacetylase Inhibitors

Strategies for Tackling Rare Genetic Diseases

Understanding CRISPR: Mechanisms and Applications

Autoimmunity – Small Molecule Approaches

NK Cell-Based Cancer Immunotherapy

Medical Dermatology Therapeutic R&D and Technical Innovation



Targeting Histone Methyltransferases and Demethylases

Targeting the Ubiquitin Proteasome System

Targeting the Microbiome
– Part 1

GPCR-Based Drug Discovery - Part 1

Advances in Gene Editing and Gene Silencing – Part 1

Gene Therapy Breakthroughs

Antibodies Against Membrane Protein Targets – Part 1

Targeting Cardio-Metabolic Diseases

Targeting Ocular Disorders


Targeting Epigenetic Readers and Chromatin Remodelers

Kinase Inhibitor Discovery

Targeting the Microbiome
– Part 2

GPCR-Based Drug Discovery - Part 2

Advances in Gene Editing and Gene Silencing – Part 2

Translating Cancer Genomics

Antibodies Against Membrane Protein Targets – Part 2

Metabolomics in Drug Discovery

TRAINING SEMINAR: Data Visualization


Monday, September 19
8:00 - 11:00 am

(SC1) Immunology Basics for Chemists

(SC2) Designing Peptide Therapeutics for Specific PPIs

(SC3) Phenotypic Screening and Chemical Probe Development

(SC4) Medical Dermatology Therapeutic R&D and Technical Innovation - Part 1

Monday, September 19
2:00 - 3:00 pm

(SC5) GPCR Structure-Based Drug Discovery

(SC6) RNA as a Small Molecule Drug Target

(SC7) Using IP Landscape Studies to Improve Your Confidence

(SC8) Medical Dermatology Therapeutic R&D and Technical Innovation - Part 2

Monday, September 19
3:30 - 6:30 pm

(SC9) Targeting of GPCRs with Monoclonal Antibodies

(SC10) Introduction to Targeted Covalent Inhibitors

(SC11) Contact Lens Drug Delivery Systems

(SC12) Introduction to Gene Editing

Monday, September 19
7:00 - 9:30 pm

(SC13) Convergence of Immunotherapy and Epigenetics for Cancer Treatment

Wednesday, September 21
7:00 - 9:30 pm

(SC14) Cancer Metabolism: Pathways, Targets and Clinical Updates

(SC15) Introduction to Allosteric Modulators and Biased Ligands of GPCRs

(SC16) Functional Screening Strategies Using CRISPR and RNAi

(SC17) Challenges and Opportunities in DNA Methyl Transferase (DNMT) Inhibitors as Therapeutics